If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-30x+14=0
a = 12; b = -30; c = +14;
Δ = b2-4ac
Δ = -302-4·12·14
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{57}}{2*12}=\frac{30-2\sqrt{57}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{57}}{2*12}=\frac{30+2\sqrt{57}}{24} $
| 4(4x+5)-(x+5)(x+5)=0 | | 4-7x=-1=x | | 4x-12=8x-96 | | X=50-0.5(x-10) | | 6(w+4)=40+4w | | 4(b+10)=64 | | 5z=125= | | p-56/4=7 | | 7(6x+7)+8x=301 | | 9=9(c-95) | | 33=4w+5 | | 57x+57=−75x+-75 | | 28,000+3,000r=36,000+2,000r | | 6=g/3+2 | | -52-5x=6x+69 | | b+15/5=7 | | A=1/35(1+4b+1) | | 14=20-3m | | 2(x)=45 | | (2x+8)(x+3)/2=42 | | 44+4m=1m-8m | | |7w|-2=12 | | -52-5x=6x=69 | | A=(1/3)5(1+4b+1) | | 7p-8(-1)=14 | | 4x+x/4=170 | | -6(1-2n)=-90 | | 15y=73+7y | | 7=13-2s | | -86=-2(1+7n) | | 3x+2+5(x-1)=6x+17 | | 124=-4(1+8n) |